Crystal structure of human selenocysteine tRNA
نویسندگان
چکیده
Selenocysteine (Sec) is the 21st amino acid in translation. Sec tRNA (tRNA(Sec)) has an anticodon complementary to the UGA codon. We solved the crystal structure of human tRNA(Sec). tRNA(Sec) has a 9-bp acceptor stem and a 4-bp T stem, in contrast with the 7-bp acceptor stem and the 5-bp T stem in the canonical tRNAs. The acceptor stem is kinked between the U6:U67 and G7:C66 base pairs, leading to a bent acceptor-T stem helix. tRNA(Sec) has a 6-bp D stem and a 4-nt D loop. The long D stem includes unique A14:U21 and G15:C20a pairs. The D-loop:T-loop interactions include the base pairs G18:U55 and U16:U59, and a unique base triple, U20:G19:C56. The extra arm comprises of a 6-bp stem and a 4-nt loop. Remarkably, the D stem and the extra arm do not form tertiary interactions in tRNA(Sec). Instead, tRNA(Sec) has an open cavity, in place of the tertiary core of a canonical tRNA. The linker residues, A8 and U9, connecting the acceptor and D stems, are not involved in tertiary base pairing. Instead, U9 is stacked on the first base pair of the extra arm. These features might allow tRNA(Sec) to be the target of the Sec synthesis/incorporation machineries.
منابع مشابه
Crystal Structure Analysis Reveals Functional Flexibility in the Selenocysteine-Specific tRNA from Mouse
BACKGROUND Selenocysteine tRNAs (tRNA(Sec)) exhibit a number of unique identity elements that are recognized specifically by proteins of the selenocysteine biosynthetic pathways and decoding machineries. Presently, these identity elements and the mechanisms by which they are interpreted by tRNA(Sec)-interacting factors are incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS We applied rat...
متن کاملCrystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB
Selenocysteine (Sec), the 21(st) amino acid in translation, uses its specific tRNA (tRNA(Sec)) to recognize the UGA codon. The Sec-specific elongation factor SelB brings the selenocysteinyl-tRNA(Sec) (Sec-tRNA(Sec)) to the ribosome, dependent on both an in-frame UGA and a Sec-insertion sequence (SECIS) in the mRNA. The bacterial SelB binds mRNA through its C-terminal region, for which crystal s...
متن کاملTertiary structure of bacterial selenocysteine tRNA
Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNA(Sec)) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNA(Sec) from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. Th...
متن کاملEukaryotic selenocysteine inserting tRNA species support selenoprotein synthesis in Escherichia coli.
Although the tRNA species directing selenocysteine insertion in prokaryotes differ greatly in their primary structure from that of their eukaryotic homologues they share very similar three-dimensional structures. To analyse whether this conservation of the overall shape of the molecules reflects a conservation of their functional interactions it was tested whether the selenocysteine inserting t...
متن کاملStructural insights into RNA-dependent eukaryal and archaeal selenocysteine formation
The micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.5 A resolution. SepSecS, a member of the Fold Type I PLP enzy...
متن کامل